Airborne demonstrators: a small step from space?

Mick Johnson
Director of CEOI

With inputs from:
Ray Dunster, Tony Sephton, Martin Cohen (Astrium)
Brian Moyna (STFC/RAL)
Paul Davey (QinetiQ)
Objective and Contents

To identify benefits of airborne platforms to development of space EO instrumentation

- Development Drivers for Airborne Demonstrators
- Examples of Airborne Demonstrators
- Lessons Learned and Future Requirements
- Future Platforms - HAPs and UAVs
- Summary
Use of Airborne Platform as Route to Space

- Airborne Demonstrators can be a cost-effective method to prove principles prior to development of more costly space instrumentation
 - Collect preliminary science data
 - Provide data for performance optimisation
 - Used to test technologies and techniques
 - Reduce cost and development time eg by use of COTs
Some Example Airborne Projects

• MARSCHALS
 – Demonstrator of a limb sounding passive millimetre wave instrument

• PaRIS
 – Demonstrator of a GNSS Passive Reflectometry instrument for mesoscale ocean altimetry

• MicroSAR
 – Demonstrator for a multi-frequency low cost airborne SAR
MARSCHALS

Millimetre-wave Airborne Receivers for Spectroscopic CHaracterisation in Atmospheric Limb Sounding

- Developed as a MASTER precursor
 - Now being developed for PREMIER demonstration
- Flown on Geophysica Smolensky M55 aircraft
 - 21km altitude, no operator, turnkey operation
 - Compatible with CNES balloon platform
- More flight campaigns planned for early 2010
December 5th 2005 Measurement Flight, Darwin

- Flight optimised for limb-sounding
 - Long legs at high altitude
- Measurements demonstrate that UT limb paths remain semi-transparent in mm-wave in presence of cirrus
 - Observation of mm-wave spectra consistently down to ~10km in UT cf Tropopause at 17-20km
PaRIS Airborne Demonstrator

- Passive Reflectometry and Interferometry System (GNSS-R)
- To demonstrate the PaRIS principles from an aircraft as a step towards a space-borne instrument
 - Maximum altitude of 6km
 - Four digitally steerable beams at L1, L2 (CA) and L5
- Combination of COTs and specially developed hardware
- Aircraft is NERC Dornier 228
- Demonstration flight at 20,000 ft over Irish Sea - Jan 2009
Airborne Synthetic Aperture Radar instrument designed and built under a UK government contract

- Consists of "Low" band (100-1300MHz) and X-band (9.5-10.7 GHz)
- Provision for any additional band to be added (e.g. S-Band, C-Band, Ku Band)
X-Band Quad Polar

Image acquired 18.00 hrs, 14-Jan-09 18cm resolution
Experiences – good and bad (1)

• For GeoPhysica:
 – Very flexible platform - large high capacity (400kg) bays
 – ~5 hours at up to 21km altitude (typically 17km at start of flight)

• Instrument qualification
 – Qualification regime demands safety, rather than reliability.
 – Reliability is less critical if between-flight maintenance is possible
 – Aircraft environment much harsher than e.g. LEO
 • -90 to +50°C, 50 to 1000 mbar, 100% condensing humidity
Experiences – good and bad (2)

- Requires large hangar & dedicated technical staff
- Restricted operation from civilian airfields
- Reliability of service from aircraft operator
- Multiple (~ 16) instrument capacity
 + Shared deployment & flight costs
 - Conflicting flight requirements e.g. between remote sensing & in-situ instruments
Airborne vs. Spaceborne

• Main differences in development and operational environment:
 – Airworthiness certification vs space qualification
 – Thermal and pressure environment
 – Radiation environment
 – Maintainability, upgradeability and reliability
 – Availability of platform resources (mass, power)
 – Use of COTs components

• Design for operation at high altitude for long durations is much more similar to space

• There is not a single solution to fit all requirements
Future Platform Requirements (1)

For demonstrators under development:

- Lowest flying costs
- Good platform availability
- Flexible accommodation for equipment
 - Radome for side-looking radar antennas
- Manned platform essential
- Ready access to maintenance personnel
- Acceptable hangar environment - cleanliness, lighting, power supply, lab area, toilets!
Future Platform Requirements (2)

Stratospheric platform (> 20km cruise altitude)

• High priority –
 – Longer duration flights (> 10 hours at cruise)
 – Possibility to have windowless bays (open apertures)
 – Bays offering simultaneous views to limb & zenith, nadir & zenith
 – One or more bays able to accommodate up to 300kg payload
 – Extensive onboard auxiliary scientific instrumentation
 – High availability & flight hours p.a.

• Lower priority
 – Flexible deployment e.g. Civilian airfields
 – Ground telemetry & telecommand of instruments
Zephyr HALE UAV

Designed to fly for months at a time

• Solar electric power
• 18m wingspan & 30kg AUM
• 60,000ft+ operational altitude
• Autonomous flight and Satcom
• Stable payload platform
• Low through-life cost
• Payload limits typically 2 kg and 50W (15W at night)
HAPS
Air Quality Monitoring from High Altitude Platforms

CEOI HAPS Study:
➢ To define key requirements for air quality monitoring service to address public environmental interests
➢ Define requirements for technology and integration.
➢ To assess how technology may be developed for space flight

Courtesy ESA & Lindstrand

10th February 2009 Next Generation Platforms for Environmental Monitoring
LIDAR technologies in 1.5-2.5 μm range for CO₂ measurement

Millimetre wave radiometric sounding of the atmosphere

Integrated Optics Hollow Waveguide

QinetiQ with University of Leicester and CTCD

Spectrometers and detectors in UV/Vis/NIR for atmospheric composition measurement

Laser heterodyne sounding in 4-150 μm range

Millimetre wave radiometric sounding of the atmosphere

STFC/RAL with Astrium and QUB

SHIRM 360 GHz image separator mixer using Schottky diode technology

QinetiQ with University of Leicester and CTCD

Univ. of Leicester with SSTL and Astrium

多模式干涉计

Courtesy SSTL

STFC/RAL with Astrium

Courtesy RAL

Univ. of Edinburgh with Selex Galileo

Hyperspectral Imaging Lidar

UCL/MSSL with Lidar Technologies
Summary

- An airborne demonstrator for a space instrument is not an easy option
- Different applications require different solutions
- Typically much lower development costs
- Opportunity for technology transfer
 - Airborne ↔ Space
- Can gain valuable scientific data and real understanding of an instrument operation
 - Demonstrated instrument and science concept may be necessary step for space
 - Can be used to optimise instrument design
- Conclusion – a useful step